Найдите периметр правильного шестиугольника, меньшая диагональ которого равна
Найдите периметр правильного шестиугольника, меньшая диагональ которого равна
Внутренний угол правильного многоугольника равен 135°. Выберите все верные утверждения для данного многоугольника.
1. Многоугольник является восьмиугольником.
2. В многоугольнике 40 диагоналей.
3. Если сторона многоугольника равна 2, то радиус вписанной окружности равен
4. Площадь многоугольника со стороной a можно вычислить по формуле
Ответ запишите в виде последовательности цифр в порядке возрастания. Например: 123.
Если BC — диаметр, O — центр окружности,
(см. рис.), то градусная мера вписанного угла BCA равна:
Если вписанный угол KML изображенный на рисунке, равен 38°, то вписанный угол KNL равен:
На одной стороне прямого угла О отмечены две точки А и В так, что ОА = 1,7, OB = а, ОА < ОВ. Составьте формулу, по которой можно вычислить радиус r окружности, проходящей через точки А, В и касающейся другой стороны угла.
На рисунке изображены две окружности с центрами в точках A и B. Если MK = 48, то сумма радиусов этих двух окружностей равна:
Две окружности с центрами A и B касаются в точке M. Найдите длину отрезка CN, если
и диаметр большей окружности на 25 больше радиуса меньшей окружности.
ABCD — прямоугольник. Точка N — середина стороны ВС. Отрезок DN пересекает диагональ АС в точке О (см. рис.). Найдите площадь четырехугольника ONBA, если площадь прямоугольника ABCD равна 492.
Прямая, проходящая через вершину К треугольника KMN, делит его медиану MA в отношении 8 : 3, считая от вершины M, и пересекает сторону MN в точке B. Найдите площадь треугольника KMN, если площадь треугольника KMB равна 16.
Основание остроугольного равнобедренного треугольника равно 10, а синус противоположного основанию угла равен 0,6. Найдите площадь треугольника.
Площадь круга равна Диаметр этого круга равен:
Из точки А проведены к окружности радиусом касательная AB (B — точка касания) и секущая, проходящая через центр окружности и пересекающая ее в точках D и C (AD < AC). Найдите площадь S треугольника ABC, если длина отрезка AC в 3 раза больше длины отрезка касательной. В ответ запишите значение выражения 5S.
В прямоугольном треугольнике ACB
CH и CK — высота и медиана соответственно, проведенные к гипотенузе (см. рис.). Найдите площадь прямоугольного треугольника ACB, если CK = 8,
Прямоугольный треугольник, длина гипотенузы которого равна 10, высота, проведенная к ней, равна 3, вращается вокруг прямой, перпендикулярной гипотенузе и проходящей в плоскости треугольника через вершину большего острого угла. Найдите объем V тела вращения и в ответ запишите значение выражения
Через вершину A прямоугольного треугольника ABC (∠C = 90°) проведен перпендикуляр AK к его плоскости. Найдите расстояние от точки K до прямой BC, если AK = 2, AB = 4, BC =
Прямая a пересекает плоскость α в точке A и образует с плоскостью угол 60°. Точка B лежит на прямой a, причем AB = Найдите расстояние от точки B до плоскости α.
Отрезок AB пересекает плоскость α в точке O. Точка M делит отрезок AB в отношении 3 : 2, считая от точки А. Из точек А, В, M проведены параллельные прямые, пересекающие плоскость α в точках A1, B1, M1 соответственно. Найдите длину отрезка ММ1, если
Градусная мера угла ABC равна 126°. Внутри угла ABC проведен луч BD, который делит данный угол в отношении 1 : 6 (см. рис.). Найдите градусную меру угла 1, если BO — биссектриса угла DBC.
На рисунке две прямые пересекаются в точке О. Если
то угол BOC равен:
На рисунке a || b,
Найдите градусную меру угла 4.
Прямые a и b, пересекаясь, образуют четыре угла. Известно, что сумма трех углов равна 210°. Найдите градусную меру меньшего угла.
Из точки A к окружности с центром O проведены две касательные AB и AC, где B и C — точки касания. Через точки C и O проведена прямая, которая пересекает касательную AB в точке M (см. рис.). Найдите градусную меру угла 1, если ∠AMC = 44°.
В равнобедренной трапеции диагональ перпендикулярна боковой стороне. Найдите значение выражения где S — площадь трапеции, если большее основание трапеции равно
а один из углов трапеции равен 60°.
Дан параллелограмм ABCD, Отрезок DK пересекает сторону АВ в
В равнобокой трапеции большее основание вдвое больше каждой из остальных сторон и лежит в плоскости α. Боковая сторона образует с плоскостью α угол, синус которого равен Найдите 36sinβ, где β — угол между диагональю трапеции и плоскостью α.
Четырёхугольник ABCD вписан в окружность. Если то градусная мера между прямыми AB и CD равна ...
Длины сторон параллелограмма относятся как 4 : 5, а высота, проведенная к большей стороне, равна 6. Найдите значение выражения где S — площадь параллелограмма, если один из углов параллелограмма равен 120°.